Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 46(4): 1119-1124, Oct.-Dec. 2015. tab
Article in English | LILACS | ID: lil-769658

ABSTRACT

Abstract Acinetobacter baumannii is a frequently isolated etiologic agent of nosocomial infections, especially in intensive care units. With the increase in multi-drug resistance of A. baumannii isolates, finding appropriate treatment alternatives for infections caused by these bacteria has become more difficult, and available alternate treatments include the use of older antibiotics such as colistin or a combination of antibiotics. The current study aimed to evaluate the in vitro efficacy of various antibiotic combinations against multi-drug resistant A. baumannii strains. Thirty multi-drug and carbapenem resistant A. baumannii strains isolated at the Ankara Training and Research Hospital between June 2011 and June 2012 were used in the study. Antibiotic susceptibility tests and species-level identification were performed using conventional methods and the VITEK 2 system. The effects of meropenem, ciprofloxacin, amikacin, tigecycline, and colistin alone and in combination with sulbactam against the isolates were studied using Etest (bioMérieux) in Mueller-Hinton agar medium. Fractional inhibitory concentration index (FIC) was used to determine the efficacy of the various combinations. While all combinations showed a predominant indifferent effect, a synergistic effect was also observed in 4 of the 5 combinations. Synergy was demonstrated in 43% of the isolates with the meropenem-sulbactam combination, in 27% of the isolates with tigecycline-sulbactam, and in 17% of the isolates with colistin-sulbactam and amikacin-sulbactam. No synergy was detected with the sulbactam-ciprofloxacin combination and antagonism was detected only in the sulbactam-colistin combination (6.66% of the isolates). Antibiotic combinations can be used as an alternative treatment approach in multi-drug resistant A. baumannii infections.


Subject(s)
Acinetobacter Infections/drug effects , Acinetobacter Infections/growth & development , Acinetobacter Infections/microbiology , Acinetobacter Infections/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/microbiology , Acinetobacter baumannii/pharmacology , Anti-Bacterial Agents/drug effects , Anti-Bacterial Agents/growth & development , Anti-Bacterial Agents/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/growth & development , Drug Resistance, Multiple, Bacterial/microbiology , Drug Resistance, Multiple, Bacterial/pharmacology , Drug Synergism/drug effects , Drug Synergism/growth & development , Drug Synergism/microbiology , Drug Synergism/pharmacology , Humans/drug effects , Humans/growth & development , Humans/microbiology , Humans/pharmacology , Microbial Sensitivity Tests/drug effects , Microbial Sensitivity Tests/growth & development , Microbial Sensitivity Tests/microbiology , Microbial Sensitivity Tests/pharmacology , Sulbactam/drug effects , Sulbactam/growth & development , Sulbactam/microbiology , Sulbactam/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL